

1

September 2017

A guide for the analysis of continuous and

landmark characters in TNT (Tree Analysis

using New Technologies)

Santiago A. Catalano

Unidad Ejecutora Lillo (UEL FML-CONICET)

Facultad de Ciencias Naturales e IML. UNT

 San Miguel de Tucumán - Argentina

sacatalano@gmail.com

 Pablo A. Goloboff

Unidad Ejecutora Lillo (UEL FML-CONICET)

San Miguel de Tucumán - Argentina

pablogolo@yahoo.com.ar

2

CONTENTS

1. INTRODUCTION 4

12. GENERALITIES .4

 2.1. Interacting with the Program. 4

 2.3. Command Truncation 4

 2.4. Data “In Memory” 4

 2.3. Numeration. 5

3. CONTINUOUS CHARACTERS 5

 3.1. Introduction 5

 3.2. Input Data. 6

 3.2.1. Standardization 7

 3.2.2. Fitting Ranges 7

 3.3. Optimization. 7

 3.4. Dependence, Scale, Ratios, Etc. 7

 3.5. Support. 8

4. LANDMARK DATA 8

 4.1. Concept of Character in Landmark Data. 8

 4.2. Order of Landmark Configurations 9

 4.3. Landmark Settings and Info 9

 4.4. Handling Data 10

 4.4.1. Data Input. 10

 4.4.2. Outputting Results. 10

 4.4.2.1. Modified Matrices

4.4.2.2. Ancestral configurations

4.4.2.3. Exporting Configurations in tps Format

4.4.2.4. Drawings

 4.4.2.5. Export Tree with Branch Lengths

 4.4.3. Missing Data

4.5. Algorithms to Optimize Landmark Data. 13

 4.5.1. Optimization of Observed States. 13

 4.5.2. Optimization Using Grids. 14

 4.5.3. Optimization Using Nested Grids. 14

 4.5.4. Combining Approaches. 14

 4.5.5. Grid Shaking, Grid Shrinking, Cell Skipping. 15

 4.5.6. Node by Node Iterative Refinement. 15

3

4.6.- Weighting/Scaling/Factors/Standardization 16

 4.6.1. Weights. 16

 4.6.2. Factors. 17

4.7. Mapping Shapes. Lines. Numbers. Ancestral/Descendant Shapes

Superimposed. Connectors, Etc.. 18

 4.7.1. Visualization of Landmark Optimization. 18

 4.7.2. 3D Visualization. 21

4.8. Ambiguity in Ancestral Landmark Reconstruction. 22

4.9 . Score Calculation. 22

 4.10. Superimposing Configurations 22

 4.10.1. Pairwise Superimposition 23

 4.10.2. Two-Point Registration. 23

 4.10.3. Using a Tree as Guide 24

4.11.-Phylogenetic Searches. 25

 4.11.1. Generalities. 2 5

 4.11.2. Searches Combining Multiple Configurations. 26

4.11.3. Group Support 26

4.11.4. Searches and Dynamic Superimposition 27

4.11.5. Implied Weighting. 28

 4.11.6. Fine Tuning of Searching Algorithms for Landma|rk Data . . 30

4.12. Calculation of Phylogenetic Signal 30

4.13. Macro (Scripting) Expression for Landmark Data 30

5. BIBLIOGRAPHY. 32

6. LINKS. 32

4

1. INTRODUCTION

 This guide is intended to help TNT users to analyze continuous characters

and landmark data. It assumes the reader already has some basic knowledge of

how to use the program. The first TNT version that allows handling continuous

characters was released in 2004, while the first version that allows analyzing

landmark data was released in 2009. Versions subsequent to the early releases

have included many new commands and functions to analyze continuous and

landmark characters. However, until recently, many of the functions and

commands in TNT could not be executed on landmark data. In December 2015 the

landmark characters were fully and seamlessly integrated with all of the

functionality in TNT. In particular, it became possible to perform phylogenetic

searches in datasets containing landmark data with the same native TNT

commands used to analyze other types of data (searches for landmark data prior to

December 2015 required the use of special scripts). The theoretical basis and

algorithms to analyze continuous characters are described in Farris (1970) and

Goloboff et al. (2006). The theoretical basis and algorithms for landmark analysis in

a parsimony context are described in Catalano et al. (2010), Goloboff & Catalano

(2011), Catalano & Goloboff (2012) and Goloboff & Catalano(2016).

2. GENERALITIES

2.1. Interacting with the Program:

 There are two different ways to interact with the program in the Windows

version of TNT. One of them is using the GUI ("graphical user interfase"), i.e. the

drop-down menus. The other is typing the commands in the command line at the

bottom of the TNT screen. The Linux and Mac versions do not have a GUI, and

then interaction with TNT for Linux and Mac is only through commands.

Throughout this guide, both the use of menus and commands will be discussed.

Throughout this document, regular TNT commands are shown in italics, menu

paths in bold and macro commands as underlined.

2.2. Command Truncation

 TNT allows truncation when typing commands. For instance, typing lmr

will execute the command lmreal. If there is ambiguity in the truncation, TNT will

generally solve it by choosing the first command that matches the string provided

(in alphabetical order). For instance if you type lm TNT will run the command

lmark and not lmreal because the letter “a” is before “r” in the alphabet. The few

exceptions to this alphabetical rule are in some commands used very commonly:

5

e.g. "p" is recognized as "procedure", instead of "pause", the first matching

command under alphabetical order.

2.3. Data “In memory”

 When the data are read into TNT, the information is kept in RAM memory.

Only one “matrix” can be read at a time (but this matrix can have multiple

partitions, to be analyzed independently). Some commands modify the data

information kept in memory (e.g. realignment of landmark configurations) in such

a way that the following commands are executed on the modified matrix. The user

can save the modified matrix onto a file using the command xread* (Data/SaveData

menu option). Once the data in memory are modified, the only way to restore the

original matrix is by re-reading it.

2.4. Numbering

The numbering of characters, taxa, trees, states, etc. always starts from zero,

with the last of N elements numbered as N-1. The only exception is the

numbering of data blocks, which starts from 1 (with 0 representing "the entire

matrix", i.e. all the blocks). When entering the commands in the command line, it is

possible to enter ranges by placing a period (“.”) between the extreme values of the

range. If the period is preceded by a blank or any non-digit, then the range is

taken to start at the first possible element (usually, 0); if the period is followed by a

blank or any non-digit, then the range is taken to end at the last possible element

(N-1). Thus, the symbol “.“ by itself is equivalent to a list of all the elements.

3. CONTINUOUS CHARACTERS

Example

Deactivate characters 4 to 9.

ccode] 4.9 ;

Deactivate from character 3 to the last character in the

matrix

ccode] 3. ;

 Deactivate all characters.

ccode] . ;

6

3.1. Introduction

 Continuous characters are always analyzed in TNT as additive characters,

using Farris optimization (Farris 1970), with the implementation described in

Goloboff et al. (2006). In this context, transformation costs are defined as the

numerical difference between states. No discretization step (e.g. gap coding

methods) is required. Most of the commands available in TNT for discrete

characters are also available for continuous characters. Exceptions are visualization

of individual ancestral reconstructions (see below), and counting the number of

specific transformations. Continuous characters can be edited with the xread=

command, and with the menu option Data/Edit/Taxon, but not with

Data/Edit/Character. Continuous characters can be named with the cnames

command, but their states cannot (i.e. the states can only be numerical values).

3.2. Input data

TNT accept continuous characters in a range from 0.000 to 65.000. Continuous

characters can be combined with discrete or landmark characters, but they should

always be included first in the matrix, before any other character. TNT accepts

three decimals (with “.“ as separator for decimals) as values for continuous

characters. Space(s) or tab(s) separate(s) the characters.

Continuous characters can be entered as single values (the mean value for

instance) or as a range. There are two ways to enter a range, with the two extreme

values separated by a hyphen or as the central value plus/minus the difference to

the limits of the range. This can be used for instance to express the range as the

mean plus/minus a standard deviation.

Example

7

3.2.3. Standardization

To infer phylogenetic relationships, continuous characters should preferably

be standardized. Otherwise, characters that differ in the scale of measurement may

disproportionately contribute to resolving the final phylogenetic hypothesis. TNT

allows standardizing continuous characters so that the maximum range (i.e. the

maximum possible difference between any two taxa) of a continuous character

equals N steps of a discrete character. The command is nstates stand N L, where N

is the value to give to the largest original value (and the lowest value automatically

set to 0), and L is a list of (continuous) characters to be rescaled. If no character is

indicated, the standardization is applied to all continuous characters in the matrix.

3.2.3 Fitting the Range

If a continuous character in the matrix falls outside rescaled the 0.000-65.000,

the values are modified to fit in it. If the intention is to perform phylogenetic

searches, the characters whose range has been modified, should be standardized.

3.3. Optimization

The command to map continuous characters on a given tree is the same as

for traditional characters (Optimize/Characters/Character Mapping). This will

give the range of optimal states for each ancestral node. When mapping

standardized continuous characters, TNT will show the standardized values.

Example

For instance, if the mean is 5 and the Standard Deviation is 0.5, the

range can be set as:

5+/-0.5

Internally, TNT considers this as the range 4.5-5.5.

8

However, it is possible to display the values in the original scale (the one in the

datafile) using the command nstates [.

In most cases, the optimization of continuous characters determines as

optimal states a range of values for several nodes. Hence, the possible number of

individual reconstructions (i.e. particular combinations of ancestral values for all

the nodes of the tree that produces the optimal score) can be extremely high, even

with the precision limit of 0.001 imposed by the implementation in TNT. That is

why, unlike the case for discrete characters, it is not possible to visualize each

optimal reconstruction for continuous characters using commands or menues.

However, this can only be done using iterrecs , a macro TNT macro expression that

allows “retrieving” these individual reconstructions (if not all, at least a good

sample of them). See macro documentation for a complete description of this

expression (iterrecs).

3.4. Dependence, Scale, Ratios, IW, Etc.

 TNT has no special treatment for the possible existence of dependence

among continuous characters. The only advice that can be offered is to use

common sense, the same common sense that should be used in the analysis of

discrete characters. For instance, if the user wants to consider the variation in size

of ten different structures as different characters, and the whole body of the species

has changed, you will be strongly overweighting the evidence provided by the

change in size. An discussion about the use of ratios in phylogenetics in

Mongiardino et al. (2010). Keep in mind that this dependence only affects tree-

choice (i.e. searches); this problem is not equally relevant when the continuous

characters are only to be mapped to be mapped on a given tree.

3.5. Support

Optimal trees obtained from the analysis of continuous characters tend to be

more resolved than trees obtained from discrete characters. This is because two

taxa are rarely identical for continuous characters, and some nodes can be

supported by only fractions of steps. Strict consensuses are also usually more

resolved, given that it is less likely to have exact ties among characters. As a

consequence, some groups present in the strict consensus may have a very low

support. That is why it is imperative to calculate support measures for matrices

9

with continuous characters, eliminating groups with very low supports. As

indicated below, the same holds for landmark data.

4. LANDMARK DATA

4.1. Concept of Character in Landmark Data

Defining what "a character" represents is not an easy task in phylogenetics.

On a superficial analysis, character definition in sequence data might seem easy:

each site (base) in a sequence represents a character. However, sequences suffer

inversion, deletions, insertions and duplications that complicate the definition of a

character. In morphological characters the definition of a character can be obvious

in some cases (presence/absence of spinal column), but in general the definition of

a character must be subject to additional considerations. In the end, there are no

radical differences with the type of decisions that must be made for the

phylogenetic analysis of discrete characters.Keeping that in mind, TNT makes the

practical decision of considering each configuration as a different character by

default, making the contribution from each configuration roughly equivalent to

that of a discrete character. This is intended more as a practical approach to the

problem than as a conceptual definition. This equivalence is obtained by

standardizing the configurations so that the contribution of each configuration is

similar to a discrete character irrespective of the scale of the configurations or the

number of landmarks (see section on Standardization). However, considering

different weights and factors, the user may change the equalization to discrete

characters, either up-- or down-weighting landmark configurations. Using

different weighting schemes and standardizations, the user may choose to consider

every individual landmark as a different character, or (going to the other extreme)

a set of several different configurations as an individual character. TNT is thus

agnostic in this regard, providing the user with a range of options, from treating

individual landmarks as several characters, to treating several configurations as a

single character.

4.2. Order of Landmark Configurations

When landmark configurations are combined with other kind of characters,

the numbering is consecutive, considering every configuration as a different

character.

10

4.3. Landmark Settings and Info

In Windows menu-based versions of TNT, commands and settings for

landmark data can be defined from two Windows dialogs . General and search

settings are defined in Settings/Landmarks. The menu option to define settings

and commands for superimposition of landmark configurations is

Data/EditData/Landmark_Alignment.

-Showing landmark settings

lmark opt: show the current landmark settings

lmark factors: show the current factors.

lmark dims: show the number of dimension of each configuration. If the matrix

combines different sources of evidence: 0= discrete (adimensional), 1= continuous

(lineal), 2= 2D landmarks, 3= 3D landmarks.

lmark numlands: give the number of landmarks for every configuration

4.4. Handling Data

4.4.1. Data Input

The easiest way to include several landmark configurations (i.e. several shapes) in

a TNT file is to use separate blocks for every configuration.

Example. Map the first configuration on the second tree in memory in a

dataset where the first ten characters are continuous characters and the

following three characters are landmark configurations.

lmark map 1/10 ; (Remember that the first character and tree is always 0)

 Example. Deactivate the 12th character, i.e. the second landmark

configuration, the command would be

ccode] 11 ;

11

Alternatively, you can separate the configuration by pipe symbols (“ | “), instead

of placing each in a separate block . Notice that only the number of configurations

and taxa should be specified in xread, NOT the number of landmarks (which is

calculated automatically).

 TNT can also import landmark data from files in tps format. It is possible

to automatically merge multiple tps files, where each file includes all the species

from a landmark configuration. The species name is extracted from the ID lines.

The menu option to read tps files is File/MergeImportData/ImportTpsFiles. Note

that you have to indicate first a name for the output TNT file, and subsequently

select the tps files that are going to be included in that file. The file itself should

then be ready to read into TNT. The command to merge tps files into a single file

in TNT format is dmerge. The name of the species is extracted from the ID line.

When landmark data is in 3D, the header of each individual should be LM3.

A species can be missing from some files, case in which it has only missing entries

for that landmark. Make sure that all the species are named in exactly the same

way in each tps datafile (otherwise, those will be considered as different species;

optionally, TNT can be made to check for minor speeling differences in the

different species, but this requires that the option [match N] is added to every

Example. Merge into the same tnt file the landmark data present in

the files wings.tps and heads.tps.

dmerge | combined.tnt = wings.tps heads.tps ;

Example.

12

block, where N is the level of name similarity to consider two species as possibly

the same; most spelling errors are in the order of N=0.9 to 0.95).

4.4.2. Outputting Results

4.4.2.1. Modified Matrices

If the matrix in memory is modified either by realignment (lmreal) or by rescaling

(lmark rescale) , it is possible to save it in a new file. This can be done either from the

menus (with Data/SaveData). With commands, you need to first open a log

(=output) file, and then write the matrix to that file. The commands used are log

and xread*.

4.4.2.2. Ancestral configurations

It is possible to export the ancestral configurations in TNT format. This is

done in a two-step process. After setting lmark showhtu, and mapping the

configurations (lmark map), the coordinates of the landmarks for all htu´s (internal

nodes) are printed in the text buffer. To save this information in a datafile you

should save the text buffer with the subsequent command.

4.4.2.3. Exporting Configurations in tps Format.

To export coordinates from terminals (optionally ancestors as well) in tps

format, use the following command:

 export | filename C T

Example. Save landmark configurations for ancestral nodes in the file

mydatafile.tnt

lmark showhtu ; lmark map ; log mydatafile.tnt ; svtxt; log/;

Example. Save the modified matrix in the file myfile.txt.

 time-; report-; sil=all ; log myfile.txt; sil-file; xread*; quote ., proc/., ;

log/;

(this insures that timing or other information is not written to the file,

saves the data, and then closes the file).

13

where C represents the configuration to be exported. If a tree (T) is specified, the

tps file will also include ancestral configurations. If no tree is specified the tps file

will include only configurations for terminal taxa.

4.4.2.4. Drawings

It is possible to export drawings of ancestral configurations for any node in

svg format using the command lmbox. This function cannot be called from the

menus. The same options available for mapping configurations on a tree are also

available here (e.g. include landmark numbers, connectors, wireframes, etc.). In the

case of configurations in 3D, this command allows drawing different “views” of

the configuration in the same svg file.

The usage is lmbox filename T C = L ; where T is the tree, C is the landmark

configuration, and L is a list of terminal or internal nodes. The drawing options

should be specified before the “ =” (see the options with help lmbox).

Figure 1. Ancestral shape

Another way to save drawings of landmark optimization is saving the whole tree

from the pre-visualization screen (Optimize/Characters/MapLandmarks and pressing

“M” when the landmark optimization is shown on the tree). Except for small trees, this

produces a drawing where each configuration is too small to appreciate the shape changes.

A better alternative is to perform the same procedure but instead of saving the whole tree

to a file, you can make a screen capture of the part of the tree of interest.

4.4.2.5. Export Tree with Branch Lengths

It is possible to export a tree file where branch lengths are proportional to

the sum of landmark changes along the branches. This is done with the command

blength. You can calculate the branch length for selected landmarks, selected

configurations or complete datasets. Branch lengths are calculated according to the

standardization factors that are in effect at the moment of optimizing landmark

data for the last time. To calculate branch lengths for particular landmarks or

Example. Export the 3rd landmark configuration (i.e. configuration 2)

of terminals and ancestral nodes for the first tree (i.e. tree 0)

 export | conf2_tree0.tps 2 0 ;

14

configurations you should deactivate all landmarks/configurations and then

activate those you are interested in.

It is also possible to use macro functions to generate graphics in svg format of the

tree with branch lengths.

 macro=; ttag-; ttag=; blen *N;

 loop 0 nnodes[N]

 if (#1 != root)

 set 0 $(0,0,0,2:$ttag #1); ttag <#1; ttag +#1 $0;

 end

 stop ;

 ttag:;

 proc/;

Reemplazandole el "ttag:" del final por:

ttag & filename.svg color ;

There is a script (http://www.lillo.org.ar/phylogeny/tnt/scripts/land_brlen.run) that

automatically calculates the branch length for the first tree in memory and

produces one nexus tree file per configuration.

4.4.3. Missing Data

 TNT can cope with missing data in the case of landmark optimization.

Missing data may involve individual landmarks for a given configuration or

complete configurations. The symbol to indicate missing data is “?” (in tps files,

Example. Calculate the branch length for configuration 0 on the tree 0:

 1-. lmark wts = 0 /. ; (give weight of 0 to all landmark configurations)

 2-. lmark wts = 1 ./0 ; (give a weight of 1 to all landmarks from

configuration 0) .

 3-. blength 0 ; (calculate the branch length for tree 0 ;

In the previous example branch lengths are shown as a table. To export a tree file

in nexus format including branch length after the first two steps

 1-. Repeat the first two steps of the previous example.

2-. ttags - ; (Trees/MultipleTags/ClearTags) erase previous tree tags.

3-. ttags= ; (Trees/MultipleTags/StoreTreeTags) start storing tree tags.

4-. blength * 0 ; calculate branch length for tree 0

5-. export * > mylandblen.tre ; export the tree with branch lengths in nexus

format.

15

the value 9999 for each coordinate is also read as a missing entry). One "?" symbol

per landmark should be included (neither one symbol per coordinate nor one

symbol per configuration).

Prosopis alba has a missing entry for the first landmark of the first configuration.

Prosopis caldenia has missing entry for the third landmark of the first configuration.

Notice that Prosopis chilensis is not in the second block. In this case TNT considers

this species as missing for the second configuration (i.e. it is not necessary to

include missing data for all the landmarks of the configuration).

 TNT cannot perform dynamic superimposition using a tree as guide when

some landmarks have missing entries. If the dataset includes several

configurations (i.e. structures), only those with no missing data will be

superimposed. The other superimposition approaches (RFTRA, pairwise-linear)

accept missing data.

4.5. Algorithms to Optimize Landmark Data

The algorithms described in this section allow establishing the optimal

ancestral shapes for a given tree and superimposition of configurations.

Algorithms for landmark searches and superimposition on a tree are described in

other sections. Settings for landmark optimization are defined with the command

lmark and/or in Settings/landmarks/GeneralOptions

The command to perform the optimization and mapping is lmark map and

lmark lscore C/T where C is the configuration and T is the tree; lmark map gives the

tree scores and shows the optimization of the specified landmark configuration in

16

the specified tree. If no tree/configuration is indicated, all configurations on all

trees are shown.

4.5.1. Optimization of observed states

 In this procedure the states (positions) assigned to the internal nodes in an

individual landmark must correspond to the positions present in the terminals.

The transformation costs are the distances between each position (but in this case,

all the costs can be precalculated prior to optimization, thus saving time) . Once

the cost matrix is calculated, the ancestral position for each landmark is obtained

by the Sankoff algorithm (Sankoff & Rosseau 1975). The main limitation of this

procedure is that the positions that minimize the score may not (and usually do

not) coincide with the observed positions.

4.5.2. Optimization using grids

In this approach additional positions can be added as possible ancestral

conditions (instead of only observed positions as in the previous approach). This

approach can be effectively considered as a discretization of the space, where the

cells of a grid are the states conditions that can be assigned to internal nodes. The

procedure first superimposes a grid in such a way that all the space occupied for

the landmark of all terminals is fully covered. Then, a cost matrix is built including

all the distances among all pairs of cells. Once the cost matrix is generated, the

character is optimized by means of the Sankoff algorithm. The optimal cell is an

approximation of the optimal position for the optimized landmark. The precision

depends on the number of cells included in the grid: the higher the number of cells,

the higher the precision. However, the execution times of Sankoff's algorithm

increases quadratically with the number of states, making it necessary to find a

value of compromise. In general, grids between 6x6 to 10x10 cells are a good

compromise between precision and execution time.

4.5.3. Nested grids: Once an optimal cell is defined for each node, the grid

approximation can be repeated considering a more reduced grid, centered around

the optimal cell. This new grid can also include cells adjacent to the optimal cell.

Example. Optimize landmark data using a grid with 5 cells per side (=25

cells in 2D, 125 cells in 3D).

lmark cell 5 ;

17

4.5.4. Combining grids and observed states.

It is also possible (and the default) to run the Sankoff algorithm including as

possible states the combination of states defined by the grid approach and the

observed .

4.5.5. Grid Shaking, Grid Shrinking, Cell skipping

 The results of the grid approach can be affected by the particular position of

the grid. Small movements of the grid may improve the scores. This is done with

the option lmark shake N where N is the number of different “shakes” to be

performed. The running time, obviously, increases linearly with the number of

shakes.

 The option lmark shrink allows increasing the precision (by diminishing the

surface covered by the grid in cases when one (and only one) of the observed

positions for a particular landmark is far away from the rest --no internal node can

then receive such an outlier position in any optimal assignment. In general there is

no important difference in time using this option. A similar result can be achieved

by the option lmark skip where the program tries to identify and exclude cells that

will not probably be optimal in certain nodes.

Example. Use a grid of ten cells on each side (100 cells in 2D, 1000 cells in

3D), and conduct two levels of nesting, superimposing the grid on the best

cell of the previous level and cells that are one cell apart from the optimal

cell.

lmark cell 10 nest 2 1

Example. Optimize configuration 3 on tree 0 combining grid and

observed states. Use a grid of six cells per side, one level of nesting, with

a window of one cell.

lmark termpoints ;

lmark cell 6 nes 1 1 ;

lmark map 0/3 ;

18

 By default TNT uses two rounds of shaking, no skipping and no shrinking.

4.5.6. Node-by-node Iterative refinement

 Once initial positions are assigned to all nodes of the tree using one of the

procedures just described, it is possible to improve the score by modifying the

positions node-by-node. The position of each landmark is modified in each

internal node in order to minimize the difference in position of the landmark in the

chosen node and its neighboring nodes (in a binary tree, ancestor and two

descendants). For the positions of these surrounding nodes fixed, the coordinates

for the middle node can be calculated exactly for bifurcations (with Torricelli's

geometric construct for finding the Fermat point of a triangle), and with great level

of precision for multifurcations. However, the positions for the surrounding

nodes themselves may require changes after re-positioning the middle node, so

that the procedure is heuristic, and needs to be performed iteratively (until a local

optimum is found). In TNT, all the nodes are visited iteratively either until a user

defined number of cycles is completed, or the improvement between two

consecutive rounds of iteration is lower than a certain threshold. This approach is

set in Settings/Landmarks/GeneralOptions option “iteratively calculate

Fermat/geometric medians” (which is the default option). The commands to perform

the iterative refinement are: lmark iter and lmark maxiters N C, where:

N = maximum number of cycles for node-by-node improvement.

C = value of score improvement between two cycles of improvement, below which

the procedure is stopped. By default TNT uses the iterative improvement with a

maximum of 100.000 iterations and 0.000001 of difference in score between

iterations as cut value.

In practice, it is always advisable to use node-by-node improvement

because the time required is small (relative to the time required by the Sankoff

optimization of the initial grid), and the improvement is significant. Yet,

providing very poor initial values (e.g. observed conditions only) shows that the

iterative refinement can still be easily trapped in local optima, thus making it

necessary to use an initial grid. Therefore, the default values include both the use

of an initial grid and iterative refinemente, which works best in most of the cases.

19

Figure 1. Windows Dialog for setting landmark optimization.

Settings/Landmarks…/ GeneralOptions).

In the dialog for general settings of landmark optimization, the box

“Terminal points” defines the settings for using the positions observed in the

terminals for optimization. The option “add terminal points to grid” uses the

combination of the grid approach with positions observed in terminals. The

corresponding command is lmark termpoints. The option “use only terminal

points” disables the grid approach. The corresponding command option is lmark

termpoints – (termpoints + reestablishes the grid). The “don’t add them” option of

the dialog defines the use of the grid approach not adding terminal points. The

corresponding command is lmark notermpoints.

Sometimes there are landmarks that present almost no change in position

along all taxa. In order to save time it is possible to skip the optimization of those

landmarks using the command lmark maxprec N. To do this, TNT calculates the

maximum distance between terminals for each landmark. Those landmarks with a

maximum distance below N are simply not optimized. By default every

landmark is optimized (i.e. lmark maxprec 0).

4.6. WEIGHTING/SCALING/FACTORS/STANDARDIZATION

4.6.1. Weights

20

The weights defined with the ccode command (or with

Data/CharacterSettings), used for traditional characters as well, will also affect

landmark configurations; they will do so as a whole, however, and cannot modify

the weight for individual landmarks.

The weight of individual landmarks can be changed with the option lmark

wts.

The syntax is: lmark wts = W C/L.

This sets weight of landmark L of configuration C to W. If no L is specified,

the weight C is given to all landmarks in configuration C (i.e. similar to weights for

discrete characters, but with the possibility of using floating point precision for the

weight). These weights are independent of the standardization factors (i.e. if

automatic factors are on, the weights multiply the standardized scores). The

default weight for each landmark is 1; to display current weights for each

landmark in each configuration type lmark wts with no further arguments.

4.6.2. Factors

By default, for each configuration, TNT standardizes the contribution to the

total score by calculating factors. This standardization is carried out in such a

way that the sum of the maximum possible difference between two terminals for

each landmark in the configuration costs as much as a step in a discrete character.

This standardization does not modify the coordinate values themselves, but uses

instead factors to multiply the scores for the individual landmarks. While the

standardization is intended to affect tree searches (i.e. choice of trees), the shapes

inferred for the ancestral nodes of a given tree are exactly the same. A complete

explanation of how factors are calculated can be found in Catalano et al. (2010).

The command to define the standardization among configurations is lmark

fact = * (which is the default option in TNT). To turn off the standardization, the

command is lmark fact = 1, case in which no standardization is performed and the

total score of each configuration is just the sum of absolute landmark

displacements (possibly weighted by the weights as defined in the previous

section).

It is also possible to calculate standardization factors in such a way that the

contribution of all landmarks within a configuration is similar irrespective of the

maximum displacement possible for each landmark. This standardization within

each configuration is combined with the standardization among the configurations.

21

The command to perform standardization within the configurations is lmark inscale

(lmark noinscale turns it off).

The use of factors to standardize the contribution of each configuration

and/or landmark, as explained, above does no modify the data matrix: the scores

are first calculated on the original data, and then multiplied by the standardization

factors. It is also possible to obtain the same result (i.e. the same scores as after the

standardization) if each coordinate in the original data is multiplied by the

corresponding factor (and then resetting every factor to unity). The command to

perform this is lm rescale = * . This does modify the matrix stored in memory, and is

important when using implied weighting or realignment (see below).

To display the factor for each landmark in each configuration type lmark

factor ;. Note that the default values are those calculated by TNT on the basis of

the original matrix, and thus change with different data sets.

The menu option to define factors and scaling is

Settings/Landmarks/GeneralOptions (Fig x.). The box “under prior weigths”

determines the different ways to assess the contribution of individual landmarks

and configurations (see point 4.6). “Equalize the contribution from each configuration

with that of a discrete character” is equivalent to lmark factor = * and is the default

option in TNT when the data is read. “Equalize the contribution from each landmark

within the configuration” corresponds to the command lmark inscale. “Let the

contribution from each landmark depend on the original magnitudes" corresponds to

lmark factor =1” . In all cases, these settings affect only the calculation of the scores

but not the original coordinates (as in lmark rescale).

4.7. Mapping Shapes

4.7.1. Visualizing ancestral landmark configurations

The ancestral shapes can be visualized on the tree pre-viewing screen, in the

Windows menu version of TNT. Make sure that the preview mode is ON

Note: do not use lm rescale if the inscale option is on. This is because

inscale determines a different factor for each landmark. If the

configuration is rescaled with those factors, the configurations are

literally deformed.

22

(Format/PreviewTrees). TNT shows one configuration (i.e. one character) at a

time, for all the nodes of the tree. The command to map configurations is:

 lmark map N/C

Where N is the tree and C the configuration.

 If no tree is defined, TNT maps the specified configurations on every tree

in memory. The same applies to configurations. To map configurations from the

menus, select Optimize/Characters/MapLandmarks. Besides showing the

ancestral shapes, the program also shows the score for each configuration mapped.

Finally, the sum of the scores for all the configurations mapped is written to the

text buffer.

Several features of the display for landmark mappings can be modified.

First, the size of the displayed configurations can be modified with the “+” and “-

“ symbols. The size of the whole tree can be modified with F3-F4 (width) and F5-

F6 (height). It is also possible to hide all the boxes (with “N”, for "nude"), then

making only the node(s) of interest visible by left-clicking on those nodes;

pressing “A” shows the boxes for all internal nodes, and “T” for all terminals.

In order to better visualize the changes occurring in a particular branch it is

possible to superimpose the shape with that of its ancestral configuration. The

ancestral configurations are displayed in gray dotted lines. This is turned off/on

pressing “O”.

Figure 2. Help for pre-visualization screen (Accessible pressing “H” while

showing landmark optimization).

23

Figure 3. Screen capture of a landmark configuration optimization. In each node it

is possible to superimpose the ancestral shape (grey-dotted line) with the shape

inferred for the node (red lines and points). The landmark displacement inferred

between ancestor descendant pair is shown in blue.

TNT allows including a wireframe connecting the landmarks of each

configuration. By default, the wireframe follows the order of the landmarks in the

dataset. The displaying of the wireframe is turned ON/OFF pressing “L” at the

tree pre-visualization screen. Alternatively the user can define a different

wireframe (i.e. user defined landmark connections). The best way to do this is to

include it in the datafile itself, after the landmark data, using the command lm

connect. The format is:

24

lmark connect C Li-Lj Lj-Lk / D Li-Lk Lj-Lk;

 Where C and D are configurations, and L-L are the landmarks to connect. It

is possible to define several lines departing from the same landmark. All the

wireframes should be included in the same call to lm connect, as every call to this

option overrides all previous wireframe definition. In the tree pre-visualization

screen, the user defined wireframes are turned ON/OFF by pressing “S”.

Additional options for visualizing landmark optimization:

- Configurations for ancestral nodes can be hidden / made visible by pressing “A”

- Configurations for terminal nodes can be hidden / made visible by pressing “T”

- Configurations for terminal nodes can be hidden / made visible by pressing “N”

 - The number of each landmark can be shown pressing “U”.

 - To visualize ancestor/descendant differences press “P”. The change (i.e.

landmark displacemente) is shown in blue. You can also visualize the change from

the node to its descendant pressing “D”. In this case the changes are shown in

green.

All the settings for visualization can also be modified using commands.

Most of these settings are modified with the option lmark line. The usage is:

Lmark line +cgfplsd. Where “c” are lines connecting the base of the box to

each landmark (3D only), “f” is a frame (or box in 3D), "p" are the movements in

each landmark form the ancestor to the node, “l” is the default wireframe, “s” is

the user defined wireframe and “d” are the changes in each landmark from the

node to the descendant.

Example. Draw a wireframe connecting landmarks 0 with 1, 1 with

2 and 3 with 4 of configuration 0 and another wireframe connecting

landmark 0 with 2 and 0 with 3 of configuration 1:

lmark connect 0 0-1 1-2 3-4 / 1 0-2 2-3 ;

Example. Show only the box frame and user defined lines.

lmark –cgpld +fs ;

25

4.7.2. 3D visualization

You can rotate the view of 3D configurations using F1-F2 and F11-F12. In

addition you can use “connectors” (Pressing “C”) to better visualize the

configurations. The commands to rotate the view are lmark rot N and lmark tilt N,

where N is expressed in degrees (i.e. 360 represents a full rotation).

4.8. Ambiguity in Ancestral Landmark Reconstruction

lmark multimap, lmark amb ;

Except for artificial examples, or in the case of missing data, it is very

uncommon to have ambiguity in ancestral landmark positions. This is because it is

very unlikely that different landmark position produce the same score (a score that

is measure with a precision of many decimals). However, there are two options of

the command lmark related to ambiguity. The option lmark multimap allows

showing the ambiguity in landmark mapping. The program repeats the mapping

several times, randomly choosing in every case one optimal position. The result is

a cloud of positions for the given landmark in each node; a small cloud indicates

that the landmark position can be determined with precision, and viceversa. The

different positions can in fact have two different causes: (i) actual ambiguity, or (ii)

errors associated to the heuristic nature of the algorithms. Hence, if the actual

ambiguity is the only interest, the user may set strong optimization settings (e.g.

lmark cell 12 nes 4 iter), so that most of the variation will be caused by real

ambiguity. Alternatively, this can be used to easily explore the degree to which

different parameters for the heuristic procedure of finding optimal coordinates

produce different results.

 The other option of lmark to deal with ambiguity is lm ambig

4.9. Score calculation

 If the matrix contains landmark data and traditional characters the score

given by lm map is the sum of the scores for all the active configurations, without

summing the scores of traditional characters. The scores of landmark

configurations plus traditional characters is given by the commands score and

length; note, however, that score and length do not differentiate the contributions

for each individual landmark (only lmark does).

 To calculate the score for particular trees /characters/landmark the

command is lmark lscore T/C/L, where T is the tree, C is the configuration and L is

26

the landmark. The macro expression that returns landmark scores is lmscore [T C

L].

IMPORTANT ! Since landmark optimization uses heuristic approaches, the scores

will depend on the particular settings defined for landmark optimization. Hence,

you should not compare the optimality of alternative trees under different

optimization settings.

4.10. Superimposing Configurations

After reading a landmark dataset, TNT will analyze the configurations as

superimposed in the datafile. However, the multiple superimposition of the

configurations can be modified in TNT. All the commands to realign the

configurations modify the matrix in memory, so that subsequent commands are

executed on the modified matrix. The original file is NOT modified by the

alignment commands. Consequently, to keep the new multiple superimposition,

the data in memory should be saved into a file with the command xread* or with

Data/SaveData.

There are four different approaches to superimpose configurations in TNT:

linear pairwise, RFTRA, two-point registration and superimposition using a tree as

guide.

TNT does not calculate GPA superimposition. If the user prefers to analyze

the data using this superimposition, the original data should be already aligned

with this procedure.

4.10.1. Pairwise superimposition.

This is a so-called ordinary alignment where all the configurations are

superimposed against a reference taxon. Two different criteria can be used:

- Minimizing the sum of Euclidean distances between corresponding landmarks.

The command is lmreal pairlin. This options is available for 2D and 3D

configurations.

lmreal pairlin [N] /C , where N is the reference taxon and C is the configuration to

be aligned.

- Using repeated medians lmreal rftra (RFTRA, Benson and Hedges 1984).

(Available only for 2D configuration).

lmreal rftra [N] /C , where N is the reference taxon and C is the configuration to be

aligned.

27

By default, lmreal pairlin and lmreal rftra do not modify the size of the

configurations; they only rotate and translate the configurations. To also modify

the size of the configurations the symbol “!” should be added: lmreal rftra [C] ! ;

4.10.2. Two point registration (2D)

TNT also allows superimposing the configurations in all the taxa, so that

two chosen points are perfectly superimposed in all the configurations. This

method is only available for 2d.

lmreal twopoint (L1 L2) /C where L1 and L2 are the two landmarks considered as

reference and C is the configuration to be superimposed.

4.10.3. Using a tree as guide (2D-3D)

TNT implements the ideas presented in Catalano & Goloboff (2012) to

superimpose landmark configurations taking a tree as a guide. The method is a

heuristic that seeks a multiple alignment to minimize the sum of landmark

displacements along the tree. For details see Catalano & Goloboff (2012).

Usage:

lmreal tree T level L cycles Y / C

Superimposes configuration C on tree T using a level of thoroughness of L and

performing Y cycles of improvement/perturbation. “level” (0-4) defines the

thoroughness of the alignment improvement at every cycle. A level of 2 is

generally a good compromise between score improvement and time. The option

“cycles” defines the number of improvement/perturbation cycles. The

perturbations imply small random changes in the position and rotation of the

configurations followed by reoptimization, to attempt to escape from locally

optimal alignments.

28

In the Dialog for re-aligning landmark data, the box “…phylogenetically” allows

running the superimposition considering a tree as a guide. The corresponding

command is lmreal tree and “strength” is equal to the option level of lmreal tree.

The box “…by pairwise comparison” includes all the approaches that

superimpose every configurations against a single reference taxon. The

corresponding command to run pairwise comparison by minimizing linear

distances is lmreal pairlin. The command to run RFTRA superimposition is lmreal

rftra. The command to run twopoint registration is lmreal baseline. To adjust size in

RFRTA and pairwise linear superimposition the symbol “!“ should be added.

Keep in mind!

There are some circumstances on which after you modify your alignment

you cannot compare the scores of one or more trees. This happens when:

-You modify the size of the configurations

- You use automatic standardization (see lmark inscale /lmark rescale).

29

In the first case you cannot compare the scores because these are a function

of the difference in the positions of the landmark. If the scale is modified, the score

is also modified without implying any real improvement.

In the second case, the standardization factors are based on the distances

among the observed positions of each landmark. When the alignment is modified,

these distances are also modified and consequently the factors used for producing

the final scores are different. This problem can be circumvented if the

standardization factors are used to rescale the configurations held in memory

using the command lm rescale = * . Once this is done, if the factor is set to unity (i.e.

no further automatic standardization factor is used), the scores before and after the

superimposition are comparable.

4.10.4. Realignment and phylogenetic searches (see Searches section)

4.11. Phylogenetic Searches

4.11.1. Generalities

Settings for phylogenetic searches including landmark data are defined in

Settings/Landmarks/BranchSwapping.

One of the most important differences between phylogenetic

morphometrics and other approaches to infer phylogenetic relationships from

landmark data is that only the formar is completely compatible with the use of

different sources of evidence in a single analysis. Thus, TNT allows combining

DNA, discrete, continuous and landmark data (see standardization section). All

the tree search algorithms implemented in TNT are transparently available for

matrices that include landmark data. In real datasets it is quite rare that more than

a single optimal tree is obtained from the analysis of landmark configurations

(because exact ties in tree scores are very unlikely). A counterpart of this is that

trees with a minimum difference (e.g. +0.0001 in score) will not be considered as

optimal. As a consequence of this it is VERY IMPORTANT to calculate support

measures to determine which groups are supported and which groups are weakly

supported. Otherwise, the tree will be over-resolved.

4.11.2. Searches Considering Multiple Configurations

30

 When phylogenetic searches are conducted considering multiple

configurations, a key factor is how to sum up the score of the different

configurations. TNT automatically calculates a standardization factor that is taken

into account when the combined score for all the configurations is calculated.

Hence if you read your datamatrix and perform a phylogenetic search without

changing any setting you are using this standardization. If you want that the score

calculated for each configuration is given by the sum of landmarks displacements

for all landmarks within a configuration you have to set lmark factor = 1. Note that

this will produce that configurations in larger scales and/or higher number of

landmarks will have more preponderance in the analysis.

4.11.3. Group Support

Group support considering landmark data alone or in combination with

other characters can be assessed by means of Bremer support and/or resampling

procedures. In the case of absolute Bremer support, the calculations are done just

as for standard characters; no special precautions are needed. In the case of

resampling, there are two options: (i) resampling individual landmarks from all

the configurations (ii) resampling configurations as a whole. The latter makes

sense only when you have several configurations (8-10 or more), or when you

combine a few landmark configurations with traditional characters.

If the dataset only includes a single or a few configurations, resampling

landmarks within configurations is the only logical option. This also makes sense

taking into account that TNT treats the “configuration” as the “character”, but

different individual landmarks within a configuration may define conflicting

groups (something precluded for standard characters). The resampling will then

evaluate the conflict between these landmarks.

The option to choose resampling and relative Bremer support considering

either whole configurations or individual landmarks is defined in the “resampling

and support” Box (selected in the menus with

Settings/Landmarks/GeneralOptions). The corresponding command is lmark

confsample (or lmark noconfsample). The default option is to assess support by

considering entire configurations.

4.11.4. Searches and Realignment

In theory, the correct way to perform phylogenetic searches would be by

calculating the score considering the best alignment on each tree. This would

31

require performing a different realignment on every possible tree (or every tree

generated during branch-swapping). This is highly impractical for datasets of 20-

25 taxa or more, due to the time required. A possible approximmation is is to

perform cycles of tree search /re-alignments until the tree obtained does not

change in two consecutive cycles. This has the problem that the search can be

trapped into a local optimum depending on the original alignment. To circumvent

this problem the following strategy can be followed:

1-. Start several replications (Wagner trees + TBR), each searching from a

different superimpositions (for instance superimposing all taxa against a

different reference taxon (without changing the size!!)

2-. Perform a phylogenetic search.

3-. Once a tree is obtained superimpose the configurations over this tree

(lmreal tree 0);

4-. Repeat 2 and 3 until the tree obtained is the same as the one used as

guide.

5-. From all replications, keep the tree with the lowest score.

Remember that in order to make scores comparable along the whole process

the configurations should be standardized prior to the analysis (with lm

rescale = *) and the standardization factor should be set to one (lm fact=1).

4.11.5. Implied Weighting

 Implied Weighting (IW) is a parsimony method that weights characters

according to the homoplasy observed for each character (Goloboff 1993).

Landmark data can be analyzed with implied weighting in TNT. The homoplasy is

calculated as the difference between the observed and the minimum possible

displacements of the landmarks, and therefore the possible minimum for each

character must be calculated. In the case of landmark data, this minimum can be

set either by a phylogenetic search (landmark-by-landmark) or by a quick

approximation to that value. This is set with Settings/Landmarks/GeneralOptions,

in the box “Minima for implied weighting”. The default option in TNT is to

approximate the minima using the length of the largest Steiner tree for any three

landmarks –this is likely to underestimate the minimum, thus producing more

apparent homoplasy. Accurate calculations of homoplasy can be obtained when

32

the minima for each landmark are found with a search for each landmark. This is

set with “determine with tree search for each landmark”. The command to handle

minima for implied weighting is lmark usmin. Once the minima are calculated in

such way, subsequent analyses under implied weighting will use these values.

Since calculating the minima in this way may require significant search time, the

values calculated can be saved to a textfile (for subsequent input to the program).

 This requires different steps:

1-. Calculate the minima, landmark by landmark, using a search as

indicated above.

2-. Show the values obtained with Settings/Landmarks/GeneralOptions

and the option “display current values” in the box “Minima for implied

weighting”.

3-. Save the text buffer (with the log and svtxt commands).

4-. Copy the minima and paste it in the original data file following the

datamatrix (and before the proc/; !!!) . The dataset will look something like

this:

There are two different options to analyze landmark data under implied

weighting, and the choice of which one to use may depend on what the landmarks

represent (or how the configurations are defined). One of these options is to weight

each individual landmark according to its homoplasy; the second is to weight each

landmark based on the average homoplasy of the configuration. By default, when

landmark data are analyzed using IW, every landmark is weighted according to its

own homoplasy. To weight an entire configuration (or several configurations

Example.

33

combined) by the total homoplasy of the component landmarks, it is necessary to

use extended implied weighting (Goloboff 2014), defining a weighting set for the

landmark(s) in question.

If IW is activated, the automatic factors to standardize configurations are

deactivated (this is because the weighting formula takes into account the absolute

value of the homoplasy). Consequently it is wise to rescale the configurations

before the IW analysis, so the configurations themselves are already standardized

in memory when IW is executed. The commands to do so are best included in the

data file itself, thus avoding the need to set this option every time you read the

data file.

The commands to set weighting for entire configurations is piwe=; xpiwe=;

xpiwe [0;. Weighting for individual landmarks (the default) is set with xpiwe–;.

The steps to perform a phylogenetic analysis under implied weighting for a

dataset with multiple configurations are:

1-. Set implied weighting ON before reading the dataset (piwe= or

Setting/ImpliedWeighting/BasicSettings)

2-. Read the dataset.

3-. Modify the configurations in memory so that those are standardized

considering the automatic factors (lm rescale = *) .

4-. (Optional) Calculate the minimum score for each landmark with a

landmark by landmark search. (lm usmin = !)

5-. To run IW by weighting landmarks individually according to its

homoplasy nothing else should be done, just use either traditional searches

(mult or Analyze/TraditionalSearch) or New Techology Searches (xmult or

Analyze/NewTechnologySearch). To run IW weighting each configuration

by the total homoplasy of its component landmarks, extended implied

weighting should be turned ON before running the search:

xpiwe= ; (Activate extended implied weighting)

xpiwe [0 ; xpiwe [1 ; xpiwe [2, ; etc. (Define each configuration as a different

set for extended implied weighting).

4.11.6. Fine Tuning of Searching Algorithms for Landmark Data

34

 As indicated above, searches for landmark data use the same standard

routines used for other types of data (Wagner trees, SPR,TBR, etc.). TNT uses

several types of shortcuts and approximations to speed up score calculations

during tree searches, described in detail by Goloboff & Catalano (2016). The

corresponding settings can be changed with

Settings/Landmarks/BranchSwapping or with the options lmark refine, lmark

errmarg, lmark quickwag and lmark precision. Do not change these settings unless

you are an advanced user of TNT and know what you are doing.

4.12. Calculation of Phylogenetic Signal

Klingenberg & Gidaszewski (2010) proposed that the significance of phylogenetic

signal in landmark data can be established by a permutation test. Although this

approach can hardly be considered as a proper method to evaluate phylogenetic

signal as claimed by the authors (“similar species tend to be grouped more closely

than expected by chance”), it is still useful to have a certain idea of the agreement

of the phylogenetic information of landmark data and alternative sources of

evidence (i.e. the reference topology). There is a script to perform such test at:

http://www.lillo.org.ar/phylogeny/tnt/scripts/land_signal.run

4.13. Landmark Expressions in TNT Scripting

lmdims [C]

dimensions of landmark character (if not a landmark, then return 0 [discrete] or 1

[continuous])

lmerror [N]

return status of landmark approximation in last SPR/TBR search (if no search

effected, values undefined). N indicates statistic to return: 0 mean; 1 stddev; 2

minimum error; 3 maximum error; 4 number of cases. If no N indicated, returns

current error margin

lmfactor [C L]

factor for character C, landmark L

lmmaxdist [C L]

maximum point distance, char C , landmark L

lmnchar

total number of landmark characters minus 1

35

lmnpoints [C]

number of points (landmarks) in character C minus 1

lmscore [T C L]

score of landmarks for tree T (optional, ch. C, landmark L)

lmwt [C L]

weight for character C, landmark L

lmxcell [C L]

return x, y, or z dimension of cells. Expressions lmycell and lmzcell are equivalent.

lmxcoord [C L T N]

return x, y, or z coordinate for node N, tree T, landmark L, char C. This uses the

value in the last optimization; be careful with this. Expressions lmycoord and

lmzcoord are equivalent.

5. REFERENCES

Catalano SA, Goloboff PA, Giannini NP. 2010. Phylogenetic morphometrics (I):

the use of landmark data in a phylogenetic framework. Cladistics, 26: 539–549.

Catalano SA, Ercoli M, Prevosti F. 2015. The More, the Better: The Use of

Multiple Landmark Configurations to Solve the Phylogenetic Relationships in

Musteloids. Systematic Biology 64: 294-306.

Catalano SA, Torres A. 2017. Phylogenetic inference based on landmark data in 41

empirical datasets. Zoologica Scripta. 46:1-11.

Catalano SA, Goloboff PA. 2012. Simultaneously mapping and superimposing

landmark configurations with parsimony as optimality criterion. Systematic Biology.

61: 392-400.

36

Farris J. 1970. Methods for computing Wagner trees. Systematic Zoology 19:

83–92.

Goloboff PA. 2014. Extended implied weighting. Cladistics 30:, 260-272.

Goloboff PA, Catalano SA. 2011. Phylogenetic morphometrics (II): algorithms for

landmark optimization. Cladistics. 27: 42–51.

Goloboff PA, Catalano SA. 2016. TNT version 1.5, including a full implementation

of phylogenetic morphometrics. Cladistics. 32:221-237.

Klingenberg C.P., Gidaszewski N.A. 2010. Testing and quantifying

phylogenetic signals and homoplasy in morphometric data. Systematic

Biology. 59:245–2616.

LINKS

TNT homepage

http://www.lillo.org.ar/phylogeny/tnt/

Some R functions that are useful for subsequent analysis of landmark data in TNT:

- Export continuos characters and landmark data from R to TNT format: (Eduardo

Ascurranz)

https://github.com/eascarrunz/tntrtools

- Calculate consensus configurations for every species and generate a TNT datafile.

- Visual Quick Tutorial (ppt).

http://www.lillo.org.ar/phylogeny/tnt/files/QuickTutorial.zip

- Scripting Documentation

http://www.lillo.org.ar/phylogeny/tnt/scripts/General_Documentation.pdf

https://github.com/eascarrunz/tntrtools

