Variation in the Content of Chlorophylls, Carotenoids and Anthocyanins in Galls Induced by Neolithus spp. (Hemiptera: Psyllidae) in Sapium haematospermum (Euphorbiaceae)

Authors

  • Ignacio Agudelo Cátedra de Farmacobotánica, Depar tamento de Farmacología, Facultad de Farmacia y Bioquímica, Uni - versidad de Buenos Aires
  • Marcelo Wagner Cátedra de Farmacobotánica, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Uni - versidad de Buenos Aires
  • Rafael Ricco Cátedra de Farmacobotánica, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Uni - versidad de Buenos Aires

Keywords:

Sapium, psyllid, insect induced plant galls, anthocyanin, cyanidin, photosyntetic pigment

Abstract

Agudelo, Ignacio; Marcelo Wagner; Rafael Ricco. 2017. “Variation in the content of chlorophylls, carotenoids and anthocyanins in galls induced by Neolithus spp (He- miptera: Psyllidae) in Sapium haematospermum (Euphorbiaceae)”. Lilloa 54 (2). Sapium hae- matospermum Müll. Arg. (Euphorbiaceae) is a tree native to South America and is usually infested by psyllids of the Neolithus genus, which induce the formation of galls in its leaves. The insect induces anatomical and biochemical changes that form a new structure with a particular tissue arrangement to protect the host. Photographs of red galls, green galls and mature fruit were obtained. Chlorophyll a and b, carotenoid pigments and anthocyanins were measured by spectrophotometric techniques. Also transversal cuts were performed in order to know the histological disposition of the anthocyanin compounds; the aglycone compound was characterized by chromatographic and spectrophotometric methods. Galls had a lower concentration of chlorophylls and carotenoids compared to healthy leaves. Anthocyanins were found in the external epidermis of red galls; this organ had the largest concentration of these pigments and the main aglycone was cyanidin. Green galls and healthy leaves didn’t have a detectable amount of these substances. Galls had a lower concentration of photosynthetic pigments; this is an indicator of a reduced photosynthesis typical of pho- toassimilates sinks. The anthocyanins are mainly cyanidin glycosides and are located in the external epidermis; this indicates and aposematic and/or an UV-protection function.

Downloads

Download data is not yet available.

References

Agati G., Azzarello E., Pollastri S., Tattini M. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science 196: 67-76.

Bragança G. P., Oliveira D. C., Isaias R. M. D. S. 2016. Compartmentalization of Metabolites and Enzymatic Mediation in Nutritive Cells of Cecidomyiidae Galls on Piper arboreum Aubl. (Piperaceae). Journal of Plant Studies 6 (1): 11.

Cabrera A. L., Zardini E. M. 1979. Manual de la flora de los alrededores de Buenos Aires. Ed. Acme. Buenos Aires, 278 pp.

Castro A., Oliveira D., Moreira A., Lemos-Filho J., Isaias R. 2012. Source–sink relationship and photosynthesis in the horn-shaped gall and its host plant Copaifera langsdorffii Desf. (Fabaceae). South African Journal of Botany 83: 121-126.

Dias G. G., Moreira G. R. P., Ferreira B. G., Isaias R. M. D. S. 2013. Why do the galls induced by Calophya duvauae Scott on Schinus polygamus (Cav.) Cabrera (Anacardiaceae) change colors?. Biochemical Systematics and Ecology 48: 111-122.

Fernandes G., Coelho M., Lüttge U. 2010. Photosynthetic efficiency of Clusia arrudae leaf tissue with and without Cecidomyiidae galls. Brazilian Journal of Biology 70 (3): 723-728.

Gould K. S. 2004. Nature's Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves. Journal of Biomedicine and Biotechnology 2004 (5): 314-320.

Guedes L. M., Aguilera N., Becerra J., Hernández V., Isaias R. M. D. S. 2016. Leaf and stem galls of Schinus polygamus (Cav.) Cabr (Anacardiaceae): Anatomical and chemical implications. Biochemical Systematics and Ecology 69: 266-273.

Haiden S. A., Hoffmann J. H., Cramer M. D. 2012. Benefits of photosynthesis for insects in galls. Oecologia 170 (4): 987-997.

Halbwirth H. 2010. The Creation and Physiological Relevance of Divergent Hydroxylation Patterns in the Flavonoid Pathway.International Journal of Molecular Sciences 11 (2): 595-621.

Harborne J. B. 1973. Phytochemical methods: A guide to modern techniques of plant analysis. Chapman & Hall, London, 64 pp.

Hartley S. E. 1998. The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former?. Oecologia 113 (4): 492-501.

Huang M. Y., Lin K. H., Yang M. M., Chou H. M., Yang C. M., Chang Y. T. 2011. Chlorophyll Fluorescence, Spectral Properties, and Pigment Composition of Galls on Leaves of Machilus thunbergii. International Journal of Plant Sciences 172 (3): 323-329.

Huang M. Y., Huang W. D., Chou H. M., Chen C. C., Chang Y. T., Yang C. M. 2014. Herbivorous insects alter the chlorophyll metabolism of galls on host plants. Journal of Asia-Pacific Entomology 17 (3): 431-434.

Korus A. 2012. Effect Of Preliminary And Technological Treatments On The Content Of Chlorophylls And Carotenoids In Kale (Brassica Oleracea var. acephala). Journal of Food Processing and Preservation 37 (4): 335-344.

Lahitte H. B. 1998. Plantas medicinales rioplatenses: plantas nativas y naturalizadas utilizadas en medicina popular en la región del Delta del Paraná, Isla Martín García y Ribera Platense. Editorial L.O.L.A. Buenos Aires.

Lee J., Rennaker C., Wrolstad R. E. 2008. Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chemistry 110 (3): 782-786.

Lichtenthaler H. K., Wellburn A. R. 1983. Determinations of total carotenoids and chlorophyllsaandbof leaf extracts in different solvents. Biochemical Society Transactions 11 (5): 591-592.

Markham K. R. 1982. Techniques of flavonoid identification. Academic Press. London, 51 pp.

Nyman T., Julkunen-Tiitto R. 2000. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proceedings of the National Academy of Sciences 97 (24): 13184-13187.

Oliveira D. C. D., Isaias R. M. D. S., Moreira A. S. F. P., Magalhães T. A., Lemos-Filho J. P. D. 2011. Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis?. Plant Science 180 (3): 489-495.

Peña M. R., Pensiero J. F. 2003. Contribución de la flora en los hábitos alimentarios de las aves de un bosque del centro de la Provincia de Santa Fe, Argentina. Ornitología Neotropical 14: 499-513.

Rand K., Bar E., Ari M. B., Davidovich-Rikanati R., Dudareva N., Inbar M., Lewinsohn E. 2017. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls. Journal of Chemical Ecology 43 (2): 143-152.

Schneeberger M. E. 1973. Alteraciones Anatómicas en Hojas de Sapium Haematospermum Muell. Arg. ("Curupi") Originadas por Agallas. Natura Neotropicalis 1 (4): 61-72.

Shorthouse J. D., Rohfritsch O. 1992. Biology of insect-induced galls. Oxford University Press. New York, pp. 60-86.

Steyn W. J., Wand S. J. E., Holcroft D. M., Jacobs G. 2002. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist 155 (3): 349-361.

Stone G. N., Schönrogge K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology and Evolution 18 (10): 512-522.

Vanderauwera S. 2005. Genome-Wide Analysis of Hydrogen Peroxide-Regulated Gene Expression in Arabidopsis Reveals a High Light-Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis. Plant Physiology 139 (2): 806-821.

Wellburn A. R., Lichtenthaler H. 1984. Formulae and Program to Determine Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents. Advances in Photosynthesis Research Vol 2 9-12 pp. Martinus Nijhoff. Países Bajos.

White T. C. R. 2010. Why do many galls have conspicuous colours? An alternative hypothesis revisited. Arthropod-Plant Interactions 4 (3): 149-150.

Published

2017-12-07

How to Cite

Agudelo, I., Wagner, M., & Ricco, R. (2017). Variation in the Content of Chlorophylls, Carotenoids and Anthocyanins in Galls Induced by Neolithus spp. (Hemiptera: Psyllidae) in Sapium haematospermum (Euphorbiaceae). Lilloa, 54(2), 91–100. Retrieved from https://www.lillo.org.ar/journals/index.php/lilloa/article/view/62
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Original papers
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس