Efficacy of microalgae removal by ozone pilot water treatment in a subtropical South American reservoir

Authors

DOI:

https://doi.org/10.30550/j.lil/2023.60.1/2023.03.02

Keywords:

Phytoplankton, supply pretreatment, water quality

Abstract

Phytoplankton removal by ozone pretreatment was studied in a pilot plant that collects water from a subtropical reservoir in northwestern Argentina. The seasonal variation of abundances by algal groups at the inlet and outlet of the plant in the period 2019-2020, and the removal efficiency of the treatment were analyzed as a function of two size categories (MDL maximum linear dimension) and biovolume in selected species. At the inflow, algal abundance showed seasonal differences with predominance of diatoms in winter, Cryptophyceae, Chlorophyceae, Dinophyceae and Trebouxiophyceae in spring and Cyanobacteria in summer. Algae outflow was also higher in winter, with a predominance of diatoms, and of cyanobacteria in autumn and summer. The treatment produced a significant reduction in algal density (mean 26.94%), which increased even more in some particular groups: Zygnematophyceae (68.21%), Euglenophyceae (59.80%), Cyanobacteria (57.87%), Cryptophyceae (53.84%), Dinophyceae (38.59%) and Chlorophyceae (28.66%). A total of 326 spp were recorded in the monitoring, although only 126 spp had a frequency of occurrence in at least 10% of the samplings, mostly with low densities. Microalgae removal in the pilot plant showed no significant correlations with cell dimensions for selected species. Class III averages of MLD =31.62 ±8.79 ?m and biovolume =4019.69 ±2711.49 ?m3 had the highest removals per treatment (72.97% and 72.74%, respectively), although they were not statistically different from the remaining classes. Conclusion: the algae removal capacity by the ozonation process of the pilot plant produced a significant reduction in algal density, especially of Cyanobacteria, Zygnematoficeae, Euglenophyceae and Cryptophyceae, which in all cases exceeded 50%.

Downloads

Download data is not yet available.

References

Aguilera, A., Haakonsson, S., Martin, M. V., Salerno, G. L., & Echenique, R. O. (2018). Bloom-forming cyanobacteria and cyanotoxins in Argentina: A growing health and environmental concern. Limnologica 69: 103-114. DOI: https://doi.org/10.1016/j.limno.2017.10.006

Al-Qassab, S., Lee, W. J., Murray, S., Simpson, A. G. B. & Patterson, D. J. (2002). Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool 41: 91-144.

Barrado-Moreno, M. M., Beltran-Heredia, J. & Martín-Gallardo, J. (2016). Microalgae removal with Moringa oleifera. Toxicon 110: 68-73. DOI: https://doi.org/10.1016/j.toxicon.2015.12.001

Battarbee, R. W. (1986). Diatom Analysis. In: Berglund, B.E. (Eds.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 527-570).

Bicudo, C. & Meneses, M. (2006). Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições. (2nd Ed.). São Carlos, Brasil: Rima Editora.

Bordet, F., Fontanarrosa, M. S. & O'farrell, I. (2017). Influence of light and mixing regime on bloom?forming phytoplankton in a subtropical reservoir. River Research and Applications 33 (8): 1315-1326. https://doi.org/10.1002/rra.3189 DOI: https://doi.org/10.1002/rra.3189

Callieri C. (2010). Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. Journal of Limnology 69 (2): 257-277. DOI: https://doi.org/10.4081/jlimnol.2010.257

Crossetti, L. O. & Bicudo, C. E. (2008). Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Garcas Reservoir, over 8 years. Hydrobiologia 614: 91-105. https://doi.org/10.1007/s10750-008-9539-1 DOI: https://doi.org/10.1007/s10750-008-9539-1

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. & Robledo, C. W. (2018). InfoStat. Retrieved from: http://www.infostat.com.ar/

Fernández, C. (2010). Caracterización limnológica de un ambiente eutrófico: el embalse Paso de las Piedras. Bioecología del Fitoplancton. Tesis Doctoral. Universidad Nacional del Sur.

Guiry, M. D. & Guiry, G. M. (2020). AlgaeBase (Data Base). Galway, UK: National University of Ireland. https://www.algaebase.org; searched on 14 October 2020.

John, D. M., Whitton, B. A. & Brook, A. J. (2011). The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae. 2° edition. Cambridge University Press, United Kingdon.

Joosten, A. M. T. (2007). Flora of the blue-green algae of the Netherlands. I. The non-filamentous species of inland waters. KNNV Publishing, Utrecht, The Netherlands. DOI: https://doi.org/10.1163/9789004277984

Komárek, J. & Fott, B. (1983). Chlorophyceae Ordnung: Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Sü?wassers, 7. Schweizerbart’sch Verlagsbuchhandlung, Stuttgart.

Komárek, J. & Anagnostidis, K. (1999). Cyanoprokaryota 1. Teil Chroococcales. En: Ettl, H., G. Gärtner, H. Heynig and D. Mollenhaver. Sü?wasserfloravon Mitteleuropa 19/1: 1-548.

Komárek, J. & Anagnostidis, K. (2005). Cyanoprokaryota. 2. Oscillatoriales. En: Büdel, B., L. Krienitz, G. Gärtner and M. Schagerl. Sü?wasserflora von Mitteleuropa 19/2: 1-758.

Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae, 1. Teil: Naviculaceae. En: Ettl, H., G. Gärtner, H. Heynig and D. Mollenhaver. Sü?wasserflora von Mitteleuropa 2/1: 1-876.

Krammer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H., J. Gerloff, H. Heynig, and D., Mollenhauer (eds.), Süsswasserflora von Mitteleuropa, G. Fischer, Jena 2/3: Stuttgart, Gustav Fischer Verlag.

Kruk, C., Huszar, V. L. M., Peeters, E. T. H. M., Bonilla, S., Costa, L., Lürlin, M., Reynolds, C. S. & Scheffer, M. (2010). A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614-627. DOI: https://doi.org/10.1111/j.1365-2427.2009.02298.x

Mc Gregor, G. B. (2013). Freshwater Cyanoprokaryota of North-eastern Australia: 2: Chroococcales. Phytotaxa 133 (1): 1-130. DOI: https://doi.org/10.11646/phytotaxa.133.1.1

Medeiros Fonseca, B., Ferragut, C., Tucci, C., Crossetti, L. O., Ferrari, F., Bicudo, D. C., Sant’ Anna, C. L. & Bicudo, C. E. M. (2014). Biovolume de cianobactérias e algas de reservatóriostropicais do Brasil com diferentes estados tróficos. Hoehnea 4 (1): 9- 30. DOI: https://doi.org/10.1590/S2236-89062014000100002

Sant’Anna, C. L., Tucci, A., Azevedo, M. T. P., Melcher, S. S., Werner, V. R., Malone, C. F. S., Rossini, E. F., Jacinavicius, F. R., Hentschke, G. S., Osti, J. A. S., Santos, K. R. S., Gama-Júnior, W. A., Rosal, C. & Adame, G. (2012). Atlas de cianobactérias e microalgas de águas continentais brasileiras. Publicação eletrônica, Instituto de Botânica, Núcleo de Pesquisa em Ficologia. www.ibot.sp.gov.br.

Utermöhl, H. (1958). Zur Ver vollkommung der quantitativen phytoplankton-methodik. Internationale Vereinigungfür Theoretische und Angewandte Limnologie: Mitteilungen 9 (1): 1-8. https://doi.org/10.1080/05384680.1958.11904091 DOI: https://doi.org/10.1080/05384680.1958.11904091

Zhang, Q., Liu, B. & Liu, Y. (2014). Effect of ozone on algal organic matters as precursors for disinfection by-products production. Environmental Technology 35 (13-16): 1753-1759. https://doi.org/10.1080/09593330.2014.881422 DOI: https://doi.org/10.1080/09593330.2014.881422

Eficiencia de remoción de microalgas por tratamiento de ozono en planta piloto en un reservorio de Sud America

Published

2023-04-12

How to Cite

Salusso, M. M., & Moraña, L. B. . (2023). Efficacy of microalgae removal by ozone pilot water treatment in a subtropical South American reservoir. Lilloa, 60(2), 1–15. https://doi.org/10.30550/j.lil/2023.60.1/2023.03.02
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Original papers

ARK

فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس