Ability of selected wood-inhabiting fungi to degrade in vitro sapwood and heartwood of Nothofagus pumilio

Fungal wood decay ability

Authors

  • Laura Gallo Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP). Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Agencia I+D+I). Univ. Nac. de la Patagonia San Juan Bosco (UNPSJB). Esquel, Chubut, Argentina https://orcid.org/0000-0003-2226-7585
  • Oscar Troncoso Facultad de Ingeniería (UNPSJB), Esquel, Chubut, Argentina. CONICET https://orcid.org/0000-0002-3090-9990
  • Alina Greslebin Facultad de Ciencias Naturales, Univ. Nac. de la Patagonia San Juan Bosco (UNPSJB). CONICET. Esquel, Chubut, Argentina https://orcid.org/0000-0001-8574-0152

DOI:

https://doi.org/10.30550/j.lil/2022.59.S/2022.09.24

Keywords:

brown-rot, light and fluorescent microscopy, mass loss, white-rot

Abstract

Fungi are the main decomposers of lignocellulose in temperate forests, and are classified as either white- or brown-rot, based on the ability to degrade lignin along with cellulose and hemicellulose. In this work, decomposition of Nothofagus pumilio wood by different wood-inhabiting fungal species was investigated through in vitro assays. Sapwood and heartwood blocks were individually exposed to 11 fungal species; mass loss was determined after 75, 135, and 195 days of exposure, comparatively analyzing the fungal ability to colonize and degrade this lignocellulosic substrate corresponding to both parts of the wood. Transverse section slices of the blocks were cut and separately stained with two types of dyes, Congo red and phloroglucinol, that are specifically associated with cellulose and lignin, respectively. Most of the species showed a different performance in sapwood and heartwood. Rhizochaete brunnea, Aurantiporus albidus and Phanerochaete velutina produced the greatest mass losses in sapwood. The latter two and Laetiporus portentosus produced the highest mass losses in heartwood, whereas Rh. brunnea was among the worst decomposers of this substrate. White rotters generally showed a higher ability to degrade the sapwood and brown rotters the heartwood. The fungal species that produced greater mass losses in heartwood than in sapwood grow on heartwood of living trees. Among white-rot fungi, two modes of action were identified: a) localized degradation, with zones of advanced decay in a less deteriorated matrix, and b) homogeneous degradation, with an even decay. Our results showed that many species have different performances in different substrates, reinforcing the importance of analyzing sapwood and heartwood decomposition separately, usually not done in this kind of studies.

 

Downloads

Download data is not yet available.

References

Blanchette, R. A. (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany 73 (S1): 999-1010.

Boer, W. D., Folman, L. B., Summerbell, R. C. & Boddy, L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews 29 (4): 795-811.

Boddy, L. (2001). Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecological Bulletins 49: 43-56.

Cwielong, P. & Rajchenberg, M. (1995). Wood-rotting on Nothofagus pumilio in Patagonia, Argentina. European Journal of Forest Pathology 25: 47-60.

Dashtban, M., Schraft, H., Syed, T. A. & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International journal of biochemistry and molecular biology 1 (1): 36-50.

Daniel, G. (2016). Fungal degradation of wood cell walls. In Y.S. Kim, R. Funada, and A.P. Singh (Eds.) Secondary xylem biology: Origins, functions, and applications (pp. 131-167). Academic Press.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M. & Robledo, C. W. (2018). InfoStat (Centro de transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina).

Fergus, B. J. & Goring D. A. I. (1970). The distribution of lignin in birch wood determined by ultraviolet microscopy. Holzforschung 24: 118-124.

Green III, F. & Highley, T. L. (1997). Mechanism of brown-rot decay: paradigm or paradox. International Biodeterioration and Biodegradation 39 (2-3): 113-124.

Greslebin, A. (2002). Flora Criptogámica de Tierra del Fuego. Fungi, Basidiomycota, Aphyllophorales: Coniophoraceae, Corticiaceae, Gomphaceae, Hymenochaetaceae, Lachnocladiaceae, Stereaceae, Thelephoraceae. Tulasnellales: Tulasnellaceae. Buenos Aires, Argentina. XI. 4. 212 págs.

Greslebin, A. & Rajchenberg, M. (2003). Diversity of Corticiaceae sensu lato in Patagonia, Southern Argentina. New Zealand Journal of Botany 41 (3): 437-446.

Greslebin, A., Nakasone, K. & Rajchenberg, M. (2004). Rhizochaete, a new genus of phanerochaetoid fungi. Mycologia 96 (2): 260-271.

Harada, H. & Côté, W. A. (1985). Structure of wood. Biosynthesis and biodegradation of wood components 1: 1-42.

Janusz, G., Pawlik, A., Sulej, J., ?widerska-Burek, U., Jarosz-Wilko?azka, A. & Paszczy?ski, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS microbiology reviews 41 (6): 941-962.

Mauch-Mani, B. & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell 8 (2): 203-212.

Mitra, P. P. & Loqué, D. (2014). Histochemical staining of Arabidopsis thaliana secondary cell wall elements. Journal of Visualized Experiments 87: e51381.

Mohareb, A., Sirmah, P., Desharnais, L., Dumarçay, S., Pétrissans, M. & Gérardin, P. (2010). Effect of extractives on conferred and natural durability of Cupressus lusitanica heartwood. Annals of forest science 67 (5): 504-504.

Pinheiro, J. C. & Bates, D. M. (2004). Mixed-effects models in S and S-PLUS. Springer.

R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing. (2018). Vienna. Austria.

Rajchenberg, M. (1996). Los hongos pudridores de Nothofagus pumilio (lenga): identificación de los cultivos puros. Bosque 17 (2): 87-100.

Rajchenberg, M. (2006). Los políporos (Basidiomycetes) de los Bosques Andino Patagónicos de Argentina. J. Cramer Berlin and Stuttgart.

Rayner, A. D. M. & Boddy, L. (1988a). Fungal communities in the decay of wood. In K.C. Marshall (Ed.) Advances in microbial ecology (pp. 115-166). Springer.

Rayner, A. D. M. & Boddy, L. (1988b). Fungal decomposition of wood: its biology and ecology. John Wiley and Sons Ltd.

Robles, C., Carmarán, C. & López, S. (2011). Screening of xylophagous fungi associated with Platanus acerifolia in urban landscapes: Biodiversity and potential biodeterioration. Landscape and Urban Planning 100 (1): 129-135.

Saka, S., Whiting, P., Fukazawa, K. & Goring, D. A. I. (1982). Comparative studies on lignin distribution by UV microscopy and bromination combined with EDXA. Wood Science and Technology 16: 269-277.

Schwarze, F. W. (2007). Wood decay under the microscope. Fungal Biology Reviews 21 (4): 133-170.

Song, F., Tian, X., Fan, X. & He, X. (2010). Decomposing ability of filamentous fungi on litter is involved in a subtropical mixed forest. Mycologia 102 (1): 20-26.

Wardrop, A. B. & Harada, H. (1965). The formation and structure of the cell wall in fibers and tracheids. Journal of Experimental Botany 16 (2): 356-371.

Evaluación de la habilidad de algunos hongos xilófagos para degradar in vitro albura y duramen de Nothofagus pumilio

Downloads

Published

2022-10-20

How to Cite

Gallo, A. L., Troncoso, O. A., & Greslebin, A. (2022). Ability of selected wood-inhabiting fungi to degrade in vitro sapwood and heartwood of Nothofagus pumilio: Fungal wood decay ability. Lilloa, 59(suplemento), 173–191. https://doi.org/10.30550/j.lil/2022.59.S/2022.09.24
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Original papers
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس