White rot in heartwood of Melia azedarach (Meliaceae) specimens from urban trees of La Plata (Buenos Aires): causal agent and chemical-anatomical characterization of the attacked wood

Authors

DOI:

https://doi.org/10.30550/j.lil/2022.59.S/2022.09.29

Keywords:

Wood, anatomical modifications, chemical modifications, china berry, Phlebia brevispora

Abstract

The xylophagous fungi frequently attack specimens of urban trees, decomposing their wood. This negatively affects stability and resistance to breakdown, putting the population and their goods at risk. During a survey of the rot present in the trees of La Plata city, specimens of Melia azedarach (Meliaceae) with evidence of white rot in exposed heartwood were observed. The aim of this work was to identify the fungus responsible for this rot and to analyze the anatomical and chemical alterations it causes in the wood. Heartwood samples with evidence of white rot in intermediate and advanced stages attained from stem and branch, respectively, were used. Fungal isolates were obtained from wood sections cultured on malt agar with antibiotic and fungicide. The identification was based on the characteristics of the colonies and confirmed by molecular techniques. Anatomical studies were performed with stereoscopic, optical and scanning electron microscopes and the chemical analysis by using wet chemistry and Fourier transform infrared spectroscopy (FT-IR). Phlebia brevispora (Basidiomycota, Polyporales) was the only xylophagous species isolated from the material. The anatomical alterations recorded allowed the diagnosis of simultaneous white rot in the stem and the coexistence of simultaneous and selective white rot in branch. Through wet chemistry, relative increases in the content of lignin and lipophilic extracts were determined, and decreases in the percentage of hydrophilic extractables in the samples of both degradation stages (branch and stem); the decrease in cellulose content was only identified in branch. FT-IR revealed the attack on cellulose and lignin. Although there is previous information about the presence of P. brevispora in standing trees, the current finding constitutes the first record for Argentina, while the interaction P. brevispora - Melia azedarach is reported for the first time in this contribution.

Downloads

Download data is not yet available.

References

Agosín, E., Blanchette, R. A., Silva, H., Kory, C. L., Cease, R., Ibach, R. E., Abad, A. R. y Mugas, P. (1990). Characterization of palo podrido, a natural process of delignification in wood. Applied and Environmental Microbiology 56 (1): 65-74.

Anagnost, S. E. (1998). Light microscopic diagnosis of wood decay. IAWA Journal 19 (2): 141-167.

Bari, E., Daryaei, M. G., Karimb, M., Bahmani, M., Schmidt, O., Woodwarde, S., Ghanbary, M. A. T. y Sistani, A. (2019). Decay of Carpinus betulus wood by Trametes versicolor - An anatomical and chemical study. International Biodeterioration & Biodegradation 137: 68-77.

Barrasa, J. M., Gonzales, A. E. y Martínez, A. T. (1992). Ultrastructural aspects of fungal delignification of Chilean woods by Ganoderma australe and Phlebia chrysocrea. A study of natural and in vitro degradation. Holzforschung 46 (1): 1-8.

Blanchette, R. A. (1991). Delignification by wood-decay fungi. Annual Review of Phytopathology 29: 381-398.

Blanchette, R. A. (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany 73 (Suppl. 1): 999-1010.

Blanchette, R. A., Obst, J. R., Hedges, J. I. y Weliky, K. (1988). Resistance of hardwood vessels to degradation by white rot Basidiomycetes. Canadian Journal of Botany 66: 1841-1847.

D’Ambrogio de Argüeso, A. (1986). Libro de técnicas histológicas en plantas. (1° Ed). Hemisferio Sur, Buenos Aires, Argentina.

Deguchi, S., Kaoru Tsujii, K. y Horikoshi, K. (2015). In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions. Scientific Reports 5: 11907. doi: 10.1038/srep11907

Deschamps, J. y Wright, J. J. (1975). Clave para el reconocimiento en cultivo de las especies xilófagas de Basidiomycetes Argentinae. Revista de Investigaciones Agropecuarias INTA Serie V.12 (2): 78-87.

Ejechi, B.O., Obuekwe, C. O. y Ogbimi, A. O. (1996). Microchemical studies of wood degradation by brown and white rot fungi in two tropical timbers. International Biodeterioration & Biodegradation 38: 119-122.

Espiñeira, J. M., Novo Uzal, E., Gómez Ros, L. V., Carrión, J. S., Merino, F., Ros Barceló, A. y Pomar, F. (2011). Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biology 13: 59-68.

Fackler, K. y Schwanninger, M. (2012). How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay. Applied Microbiology and Biotechnology 96: 587-599.

Fackler, K., Stevanic, J. S., Ters, T., Hinterstoisser, B., Schwanninger, M. y Salmén, L. (2010). Localization and characterization of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme Microbiology and Technology 47 (6): 257-267.

Gao, J., Kim, J. S. y Daniel, G. (2018). Effect of thermal modification on the micromorphology of decay of hardwoods and softwoods by the white rot fungus Pycnoporus sanguineus. Holzforschung 72 (9): 1-15.

Hinterstoisser, B., Jalkanen, R., Nowotny, M. y Schwanninger, M. (2001). Lignification of Scots Pine trees from Arctic Circle up to timberline. Buvísindi Icelandic Agricultural Sciences 14: 55-59.

Hou, J., Aydemir, B. E. y Dumanli, A. G. (2021). Understanding the structural diversity of chitins as a versatile biomaterial. Philosophical Transactions of the Royal Society A 379: 20200331. Recuperado de https://doi.org/10.1098/rsta.2020.0331

Jelle, B. P. y Hovde, P. J. (2012). Fourier Transform Infrared Radiation Spectroscopy for wood rot decay and mould fungi growth detection. Advances in Materials Science and Engineering. doi:10.1155/2012/969360

Kirk, T. K. y Highley, T. L. (1973). Quantitative changes in structural components of conifer woods during decay by white and brown rot fungi. Phytopathology 63: 1338-1342.

Kubayashi, T. y Maekawa, N. (2001). Identification and pathogenicity of the fungus isolated from butt rot of Japanese Cypress, Chamaecyparys obtusa. Journal of General Plant Pathology 67: 262-267.

Lancha, J. P., Perré, P., Colin, J., Lv, P., Ruscassier, N. y Almeida, G. (2021). Multiscale investigation on the chemical and anatomical changes of lignocellulosic biomass for different severities of hydrothermal treatment. Scientific Reports 11 (8444): 1-16. doi: 10.1038/s41598-021-87928-y

Levin, L. y Castro, M. A. (1998). Anatomical study of the decay caused by the white-rot fungus Trametes trogii (Aphyllophorales) in wood of Salix and Populus. IAWA Journal 19 (2): 169-180.

Lucentini, C. G., Medina, R., Franco, M. E. E., Saparrat, C. N. y Balatti, P. A. (2021). Fulvia fulva [syn. Cladosporium fulvum, Passalora fulva] races in Argentina are evolving through genetic changes and carry polymorphic avr and ecp gene sequences. European Journal of Plant Pathology 159: 525-542.

Luna, M. L., Ramos Giacosa, J. P., Giudice, G. E., Fernández, P. V., Ciancia, M. y Saparrat, M. (2015). Structure and chemistry of the xylem of arborescent species of Blechnum from South America. IAWA Journal 36: 3-21.

Martínez, A.T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M., Gutiérrez, A. y del Río, J. C. (2005). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8: 195-204.

Maryam, K., Daryaei, M. G., Torkaman, J., Oladi, R., Tajick Ghanbary, M. A. y Bari, E. (2016). In vivo investigation of chemical alteration in oak wood decayed by Pleurotus ostreatus. International Biodeterioration & Biodegradation 108: 127-132.

Municipalidad de La Plata, Dirección de Espacios Verdes. (1983). Arboles de la Ciudad de La Plata.

Murace, M., Luna, M. L., Ciuffani, M. G. y Perelló, A. (2017). Modificaciones anatómicas y químicas en el leño de ejemplares del arbolado de la ciudad de La Plata (Buenos Aires) causadas por Laetiporus sulphureus (Basidiomycota, Polyporales). Boletín de la Sociedad Argentina de Botánica 52 (4): 647-661.

Nakasone, K. K. (1990). Cultural studies and identification of wood – inhabiting Corticiaceae and selected Hymenomycetes from North America. Berlin, J. Cramer.

Nakasone, K. K., Burdsall Jr., H. H. y Noll, L. A. (1982). Species of Phlebia section Leptocystidiophlebia (Aphyllophorales, Corticiaceae) in North America. Mycotaxon 14 (1): 3-12.

Nakasone, K. K. y Eslyn, W. E. (1981). A new species, Phlebia brevispora, a cause of internal decay in utility poles. Mycologia 73 (5): 803-810.

Nowak, D. J. y Dwyer, J. F. (2007). Understanding the benefits and costs of urban forest ecosystems. En: Kuser, J.E. (Ed.), Urban and Community Forestry in the Northeast. Netherlands (pp. 25-46). Springer.

Otjen, L. y Blanchette, R. A. (1986). A discussion of microstructural changes in wood during decomposition by white rot basidiomycetes. Canadian Journal of Botany 64: 905-911.

Otjen, L., Blanchette, R. A., Effland, M. y Leatham, G. (1987). Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 41: 343-349.

Pandey, K. K. y Pitman, A. J. (2003). FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation 52: 151-160.

Pandey, K. K. y Pitman, A. J. (2004). Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the Acetyl Bromide Method and Fourier Transform Infrared Spectroscopy. Journal of Polymer Science: Part A: Polymer Chemistry 42: 2340-2346.

Poletto, M., Ornaghi Jr., H. L. y Zattera, A. J. (2014). Native Cellulose: Structure, characterization and thermal properties. Materials 7: 6105-6119.

Pramod, S., Koyani, R. D., Bhatt, I., Vasava, A. M., Rao, K. S. y Rajput, K. S. (2015). Histological and ultrastructural alterations in the Ailanthus excels wood cell walls by Bjerkandera adusta (Willd.) P. Karst. International Biodeterioration & Biodegradation 100: 124-132.

Rajchenberg, M. y Robledo, G. (2013). Pathogenic polypores in Argentina. Forest Pathology 43: 171-184.

Robles, C. A., Carmarán, C. C. y López, S. E. (2011). Screening of xylophagous fungi associated whit Platanus acerifolia in urban landscapes: Biodiversity and potential biodeterioration. Landscape and Urban Planning 100: 129-135.

Robles, C. A., Castro, M. A. y López, S. E. (2014). Wood decay by Inonotus rickii and Bjerkandera adusta: A micro- and ultra-structural approach. IAWA Journal 35 (1): 51-60.

Rodríguez, L. (1978). Métodos de Análisis empleados en la Industria papelera. (1° Ed.). Universidad Industrial de Santander, Colombia.

Saparrat, M. C. N., Estevez, J. M., Troncozo, M. I., Arambarri, A. y Balatti, P. (2010). In-vitro depolymerization of Scutia buxifolia leaf-litter by a dominant Ascomycota Ciliochorella sp. International Biodeterioration & Biodegradation 64: 262-266.

Schwarze, F. W. M. R. (2007). Review wood decay under the microscope. Fungal Biology Reviews 21: 133-170.

Schwarze, F. W. M. R., Engels, J. y Mattheck, C. (2000). Fungal strategies of wood decay in trees. (1° Ed). Springer Verlag, Berlin.

Schwarze, F. W. M. R. y Fink, S. (1997). Reaction zone penetration and prolonged persistence of xilem rays in London plane wood degraded by the basidiomycete Inonotus hispidus. Mycologycal Research 101 (10): 1207-1214.

Schwarze, F. W. M. R., Lonsdale, D. y Fink, S. (1997). An overview of wood degradation patterns and their implications for tree hazard assessment. Arboricultural Journal 21: 1-32.

Shi, J., Xing, D. y Li, J. (2012). FTIR Studies of the Changes in Wood Chemistry from Wood Forming Tissue under Inclined Treatment. Energy Procedia 16: 758-762.

Singh, P., Sulaiman, O., Hashim, R., Peng, L. Ch. y Singh, R. P. (2012). Biodegradation study of Pycnoporus sanguineus and its effects on structural and chemical features on Oil Palm biomass chips. Lignocellulose 1 (3): 210-227.

Skyba, O., Douglas, C. J. y Mansfielda, S. D. (2013). Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Applied and Environmental Microbiology 79 (8): 2560-2571.

Srebotnik, E. y Messner, K. (1994). A simple method uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Applied and Environmental Microbiology 60 (4): 1383-1386.

Suhara, H., Maekawa, N., Kubayashi, T., Sakai, K. y Kondo, R. (2002). Identification of the basidiomycetous fungus isolated from butt rot of the Japanese cypress. Mycoscience 43: 477-481.

Suhara, H., Maekawa, N., Kubayashi, T., Kondo, R. (2005). Specific detection of a basidiomycete, Phlebia brevispora associated with butt rot of Chamaecyparis obtusa, by PCR-based analysis. Journal of Wood Science 51: 83-88.

Toledo, A. V., Franco, M. E. E., López, S. M. Y., Troncozo, M. I., Saparrat M. C. N. y Balatti, P. A. (2017). Melanins in fungi: Types, localization and putative biological roles. Physiological and Molecular Plant Pathology 99: 2-6.

Urcelay, C., Robledo, G., Heredia, F., Morera, G. y García Montaño, F. (2012). Hongos de la madera en el arbolado urbano de Córdoba. (1° Ed). Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET).

van Heerden, A., le Roux, N. J., Swart, J., Gardner-Lubbe, S. y Botha, A. (2008). Assessment of wood degradation by Pycnoporus sanguineus when co-cultured with selected fungi. World Journal of Microbiology and Biotechnology 24: 2489-2497.

Wheeler, E. A. (2011). Insidewood Database. 2004-onwards. Recuperado de insidewood.lib.ncsu.edu. [Acceso: Mayo del 2022]. Inside Wood - a web resource for hardwood anatomy. IAWA Journal 32 (2): 199-211.

Win, E. (2016). Microscopic decay pattern of yellow meranti (Shorea gibbosa) wood caused by white-rot fungus Phlebia brevispora. Biodiversitas 17 (2): 417-421.

Win, E., Hwang, W., Takemoto, S. y Imamura, Y. (2009). Microscopy of progressive decay of fungi isolated from meranti tree canker. APPS Plant health management: An integrated approach. Recuperado de https://www.appsnet.org/publications/proceedings/

Win, E., Takemoto, S. y Imamura, Y. (2010). Molecular identification of decay fungi in xylem of yellow meranti (Shorea gibbosa) canker: Wood Research Journal 1 (2): 78-81.

Zabel, R. A. y Morrell, J. J. (1992). Wood microbiology. Decay and its prevention. (1° Ed). Academic Press, London.

Pudrición blanca en duramen de ejemplares de Melia azedarach (Meliaceae) del arbolado urbano de La Plata (Buenos Aires): agente causal y caracterización químico-anatómica del leño atacado

Published

2022-10-20

How to Cite

Murace, M., Luna, M. L. . ., Lucentini, G., Maly, L., Perelló, A. ., & Saparrat, M. C. (2022). White rot in heartwood of Melia azedarach (Meliaceae) specimens from urban trees of La Plata (Buenos Aires): causal agent and chemical-anatomical characterization of the attacked wood. Lilloa, 59(suplemento), 387–407. https://doi.org/10.30550/j.lil/2022.59.S/2022.09.29
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Original papers
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس