Hannibal ad portas: prediciendo la distribución potencial del hongo exótico degradador de madera Coniophora olivacea, nuevo en Patagonia

Autores/as

DOI:

https://doi.org/10.30550/j.lil/1801

Palabras clave:

Maxent, invasión biológica, pudrición castaña, Nothofagus

Resumen

Coniophora olivacea se ha considerado tradicionalmente un importante degradador de madera en obra de coníferas y latifoliadas, y también se reportan daños en puertas, marcos de ventanas y otras estructuras de madera expuestas a la intemperie. Un rol más restringido como patógeno forestal se ha citado en climas fríos. Los estudios que predicen la distribución de especies potencialmente invasoras son una herramienta para focalizar los esfuerzos de manejo de las mismas. Los modelos de Máxima Entropía permiten predicciones basadas en capas altitudinales y climáticas, así como también en datos preexistentes sobre la distribución de las especies. El objetivo de este trabajo es reportar la presencia de este degradador por primera vez en Patagonia, y estudiar sus patrones de propagación usando modelos de Máxima Entropía orientados a predecir su comportamiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aref'ev, S. P. (1991). Xylotrophic fungi-the causal agents of Siberian pine (Pinus sibirica Du Tour) rot in the central taiga region of the Irtysh river basin. Mikologiya i Fitopatologiya 25 (5): 419-425.

Chee, A. A., Farrell,R. L, Stewart, A. & Hill, R. A. (1998). Decay potential of basidiomycete fungi from Pinus radiata. Proceedings of the New Zealand Plant Protection Conference 51: 235-240. https://doi.org/10.30843/nzpp.1998.51.11659 DOI: https://doi.org/10.30843/nzpp.1998.51.11659

Da Costa, E. W. B., Rudman, P. & Gay, F. J. (1961). Relationship of growth rate and related factors to durability in Tectona grandis. Empire Forestry Review 40 nº 4 (106): 308-319.

Da Costa, E. W. B. & Osborne, L. D. (1967). Comparative decay resistance of twenty-six New Guinea timber species in accelerated laboratory tests. The Commonwealth Forestry Review 46 (1): 63-74. http://www.jstor.org/stable/42604717

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012). jModel?Test 2: more models, new heuristics and parallel computing. Nat Methods 9: 772-772. https://doi.org/10.1038/nmeth.2109 DOI: https://doi.org/10.1038/nmeth.2109

Desprez-Loustau, M. L., Robin, C., Buee, M., Courtecuisse, R., Garbaye, J., Suffert, F. & Rizzo, D. M. (2007). The fungal dimension of biological invasions. Trends in Ecology & Evolution 22 (9): 472-480. https://doi.org/10.1016/j.tree.2007.04.005 DOI: https://doi.org/10.1016/j.tree.2007.04.005

Dickie, I. A., Bufford, J. L., Cobb, R. C., Desprez?Loustau, M. L., Grelet, G., Hulme, P. E., Klironomos, J., Makiola, A., Nuñez, M. A., Pringle, A. & Thrall, P. H. (2017). The emerging science of linked plant–fungal invasions. New Phytologist 215 (4): 1314-1332. https://doi.org/10.1111/nph.14657 DOI: https://doi.org/10.1111/nph.14657

Edman, M. & Jonsson, B. G. (2001). Spatial pattern of downed logs and wood?decaying fungi in an old?growth Picea abies forest. Journal of Vegetation Science 12 (5): 609-620. https://doi.org/10.2307/3236900 DOI: https://doi.org/10.2307/3236900

Elith, J. & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40: 70-93. https://doi.org/10.1146/annurev.ecolsys.110308.12015 DOI: https://doi.org/10.1146/annurev.ecolsys.110308.120159

Gallo. A. L., Silva, P. V., López Bernal, P., Moretto, A. S. & Greslebin, A. G. (2021). Fungal diversity, woody debris, and wood decomposition in managed and unmanaged Patagonian Nothofagus pumilio forests. Mycological Progress 20: 1309-1321. https://doi.org/10.1007/s11557-021-01734-4 DOI: https://doi.org/10.1007/s11557-021-01734-4

Gardes, M. & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

Ginns, J. (1982). A monograph of the genus Coniophora Aphyllophorales, Basidiomycetes. Opera Botanica 61: 1-61.

Giordana, G., Kitzberger, T. & La Manna, L. (2020). Anthropogenic factors control the distribution of a southern conifer Phytophthora disease in a peri-urban area of northern Patagonia, Argentina. Forests 11 (1183): 1-17. https://doi.org/10.3390/f11111183 DOI: https://doi.org/10.3390/f11111183

Greslebin, A. G. & Rajchenberg, M. (2003). Diversity of Corticiaceae sens. lat. in Patagonia, southern Argentina. New Zealand Journal of Botany 41 (3): 437-446. https://doi.org/10.1080/0028825X.2003.9512861 DOI: https://doi.org/10.1080/0028825X.2003.9512861

Guindon, S. Dufayard, J. F., Lefort, V., Anisimova. M., Hordijk, W. & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59 (3): 307-321. https://doi.org/10.1093/sysbio/syq010 DOI: https://doi.org/10.1093/sysbio/syq010

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. https://doi.org/10.1002/joc.1276 DOI: https://doi.org/10.1002/joc.1276

Huelsenbeck, J. P. & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754 DOI: https://doi.org/10.1093/bioinformatics/17.8.754

Kass, J. M., Vilela, B., Aiello-Lammens, M. E., Muscarella, R., Merow, C. & Anderson, R. P. (2018). Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution 9: 1151-1156. https://doi.org/10.1111/2041-210X.12945 DOI: https://doi.org/10.1111/2041-210X.12945

Katoh, K. & Standley, D. M. (2013). MAFFT multiple sequence alignment software 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/ molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010

Kauserud, H., Shalchian-Tabrizi, K. & Decock, C. (2007). Multilocus sequencing reveals multiple geographically structured lineages of Coniophora arida and C. olivacea (Boletales) in North America. Mycologia 99 (5): 705-713. https://doi.org/10.3852/mycologia.99.5.705 DOI: https://doi.org/10.3852/mycologia.99.5.705

Krishnamurthy, K. V. (Eds.) (1988). Methods in Plant Histochemistry. Madras: Viswanathan and Co.

Peterson, A. T., Papes, M. & Soberon, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213: 63-72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 DOI: https://doi.org/10.1016/j.ecolmodel.2007.11.008

Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190 (3-4): 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips, S. J., Dudík, M. & Schapire, R. E. (2017). Maxent Software for Modeling Species Niches and Distributions [Software]. Version 3.4.0. [accessed 2023 Feb 28]. http://biodiversityinformatics.amnh.org/open_source/maxent/

Rivera, S. M. (1988). Revisión xilológica del género Nothofagus Bl. (Fagaceae) para la Argentina. Buenos Aires: Monografías de la Academia Nacional de Ciencias Exactas, Físicas y Naturales. Vol. 4. p. 73-84.

Rivera Nava, L., Quintanar, I. & Perez Olvera, C. (1999). Comparación histoquímica de albura y duramen de tres especies de Quercus. Madera y Bosques 5 (1): 27-41. https://doi.org/10.21829/myb.1999.511352 DOI: https://doi.org/10.21829/myb.1999.511352

Romano, G. M., Greslebin, A. G. & Lechner, B. E. (2017). Modelling agaricoid fungi distribution in Andean forests of Patagonia. Nova Hedwigia 105 (1-2): 95-120. https://doi.org/10.1127/nova_hedwigia/2016/0377 DOI: https://doi.org/10.1127/nova_hedwigia/2016/0377

Rudman, P. (1963). The Causes of Natural Durability in Timber-Pt. XII. The Deterioration in Antifungal Activity of Heartwood Extractives During the Life of Trees of Eucalyptus marginata Sm. Holzforschung 17 (3): 86-89. https://doi.org/10.1515/hfsg.1963.17.3.86 DOI: https://doi.org/10.1515/hfsg.1963.17.3.86

Silva, P. V., Vélez, M. L., Hernández Otaño, D., Nuñez, C. & Greslebin, A. G. (2016). Action of fosetyl?al and metalaxyl against Phytophthora austrocedri. Forest Pathology 46 (1): 54-66. https://doi.org/10.1111/efp.12216 DOI: https://doi.org/10.1111/efp.12216

Stalpers, J. (1978). Identification of wood-inhabiting fungi in pure culture. Studies in Mycology 16: 1-248.

Tortorelli, L. A. (Eds.) (2009). Maderas y bosques argentinos: tomo 1 (No. F50-01). Buenos Aires: Acmé.

White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, ed. Michael A. Innis, David H. Gelfand, John J. Sninsky, Thomas J. White, PCR Protocols, Academic Press, pp. 315-322, ISBN 9780123721808. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Worrall, J. J. & Nakasone, K. K. (2009). Decays of Engelmann spruce and subalpine fir in the Rocky Mountains. USDA Forest Service Forest Insect and Disease Leaflet 150. In: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region.

Yuan, H. S, Wei, Y. L. & Wang, X. G. (2015). Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecology 17: 140-145. https://doi.org/10.1016/j.funeco.2015.06.001 DOI: https://doi.org/10.1016/j.funeco.2015.06.001

Hannibal ad portas: prediciendo la distribución potencial del hongo exótico degradador de madera Coniophora olivacea, nuevo en Patagonia

Descargas

Publicado

2023-08-22

Cómo citar

Moro Cordobés, F., Almonacid, P. ., Troncoso, O., Romano, G., & Kuhar, F. (2023). Hannibal ad portas: prediciendo la distribución potencial del hongo exótico degradador de madera Coniophora olivacea, nuevo en Patagonia. Lilloa, 60(2), 149–169. https://doi.org/10.30550/j.lil/1801
صندلی اداری سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos originales
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس